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Abstract

In this work we consider the problem of detecting anomalous
deviations from expected behavioral trajectories generated
by a multi-agent system. Common methods for time series
anomaly detection do not explicitly consider the goal-directed
nature of rational agents. This work proposes a method for
detection of anomalous behaviors based on agent intent for-
mulated using agent-based Lagrangian Mechanics. We pro-
pose an anomaly detection method that simultaneously learns
to 1) predict the intended goals of agents from their tra-
jectories, and 2) detect anomalies based on the predictions.
The method uses a structured one-class support vector ma-
chine (structured OC-SVM), where latent variables represent
the intentions (goals) of agents, and SVM weights represent
the attraction or repulsion strength of potential goals and ob-
structions. Model parameters are learned in an unsupervised
way. We conduct experiments in a marine surveillance set-
ting, where we monitor high-traffic ports and detect anoma-
lous vessels. Experimental results show that our algorithm
shows promise for detecting anomalous behaviors in systems
of goal-directed agents.

Introduction
We considered the coupled problems of intention prediction
and anomaly detection on trajectories. Anomaly Detection
is the problem of finding patterns in data that differ from the
majority of normative support. This work is primarily mo-
tivated by an application to maritime vessel traffic surveil-
lance. The United State Coast Guard (USCG) must monitor
and patrol numerous high traffic ports and waterways for in-
dications of unusual, suspicious or potentially malicious be-
havior. The human-labor intensive process of discriminating
anomalous vessel traffic from normative background often
relies on years of training and intuition. While the anoma-
lous vessel trajectories of interest occur very infrequently,
voluminous historical data of normal traffic is publicly avail-
able. Therefore, we pose the problem of detecting suspicious
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Figure 1: AIS Data Trajectories. Color Darkening in trajec-
tories indicate forward passage of time.

vessels as anomaly detection given a data set of assumed
normative traffic.

Approaches for trajectory anomaly detection typically
construct a model of the data distribution for example, using
DBSCAN, Gaussian mixture models, nearest neighbors, or
One Class Support Vector Machines (OC-SVM). Operating
directly on a trajectory treated as a vector representation of a
sequence of points encounters problems such as high dimen-
sionality for longer sequences and is not robust to noise or
time shift. Many works construct more compact representa-
tions of trajectories but rely on explicit spatio-temporal mod-
elling. These approaches have several shortcomings. They
do not capture higher level semantics and place greater bur-
den on human operators to interpret detected anomalies be-
fore raising alerts.

A naturally related field is that of Intention Prediction,
which is the task of explaining observed human behavior
and determining motivations. The challenge and draw of
this vein of work is that human intention is difficult to de-
fine and often requires contextual knowledge beyond what is
typically present in numerical data. In line with such work,
we aim to reason about the agent planning processes be-
hind trajectories to infer the intentions of observed agents,
and then detect intent-based anomalies. Explicitly modelling



path planning exploits the underlying semantic structure of
agent trajectories and presents detections which are intu-
itively interpretable.

To do so, our model combines a formulation of path inten-
tions which detects goals for pedestrians walking through a
scene with the Structured OC-SVM following the example
of the Hidden Markov Model One Class Support Vector Ma-
chine (HMM-OC-SVM) (Görnitz, Braun, and Kloft 2015).
The HMM-OC-SVM is an anomaly detector which learns
the transition matrix, emission probabilities, and prior distri-
bution for sequential data generated by an HMM. It couples
the HMM Viterbi optimization with OC-SVM training opti-
mizations, and at training time alternates the two optimiza-
tions to infer latent state transition chains and then infers a
decision boundary which measures the degree of conformity
to the HMM. Similarly, we couple and alternate optimiza-
tion goal choice for trajectories and optimization of a SVM
decision boundary that measures conformity.

Our intention prediction model follows agent-based La-
grangian Mechanics, which is related to potential-based path
planning (Xie et al. 2018). This models trajectories as re-
sponding to attractive and repulsive fields of point sources
similar to those of stationary charged particles. We allow the
magnitudes of the attractive forces of the particles to vary
and construct feature vectors that such that OC-SVM train-
ing fits these magnitudes and determines popular goals from
a set of candidates.

We test our algorithm in a marine surveillance setting
using marine Automatic Identification System (AIS) data
recorded near ports. Experiment results show that our al-
gorithm outperforms standard kernel-based support vector
machines, and that an intent-based formulation has potential
in this domain.

Related Work
Intention Prediction This is a relatively new but impor-
tant domain in artificial intelligence with many potential
applications, and most work is focused on predicting hu-
man intentions (Yuen and Torralba 2010; Wang et al. 2012;
Li and Fu 2014; Vu et al. 2014; Qi et al. 2017; Rhinehart
and Kitani 2017; Qi, Jia, and Zhu 2018), Particularly re-
lating to trajectory data, several works model agent path
planning-based on a valuation of their surroundings. Inverse
reinforcement learning is also used to infer a valuation of
walkable space (Ziebart et al. 2009; Kitani et al. 2012). One
formulation constructs a state space from segmented images,
generates a state valuation based on frequency of traversal,
and predicts paths that traverse the space (Walker, Gupta,
and Hebert 2014). Our work builds off of a formulation
of trajectory intention which explicitly models path plan-
ning for explicit goals and boundaries using vector fields
(Xie et al. 2018). Other works model the interaction be-
tween pedestrians in crowded scenes (Kuderer et al. 2012;
Alahi et al. 2016; Ma et al. 2017). We also include similar
interactions between agents.

Anomaly Detection General data driven Anomaly Detec-
tion considers separating vector spaces into inlier and out-

lier regions or direct data mining (Chandola, Banerjee, and
Kumar 2009; Zimek, Schubert, and Kriegel 2012; Agrawal
and Agrawal 2015). These works focus on aspects such as
varied density of inlier clusters, high dimensionality, deci-
sion boundary formalization, graphical structure, and mu-
tual information. Anomaly Detection also receives attention
in discrete domains for the purposes of network intrusion
and fraud detection (Chandola, Banerjee, and Kumar 2012;
Akoglu, Tong, and Koutra 2015; Buczak and Guven 2016).
Many of these works study sequential data, but the discrete
formulation does not match our setting. Our approach simi-
lar to those which construct SVM kernels to define distance
between discrete sequences. Recent works in anomaly de-
tection have also considered spatio-temporal anomaly detec-
tion while modelling human behavior in the domain of secu-
rity camera footage (Li, Mahadevan, and Vasconcelos 2014).
Many works focus on detecting anomalous video frames us-
ing imaging techniques. Some of these approaches model
the behavior of pedestrians and capture intention prediction
by including path planning in formulations.

In maritime anomaly detection, many approaches focus
on geographic modelling such as mining frequently travelled
routes and path segments. (Sidib and Shu 2017). Route-
based approaches for the most part declare anomalous be-
haviour based on distance from routes. There is a previ-
ous, similar potential field-based model, but the field is con-
structed differently and is not goal-based (Osekowska and
Carlsson 2015). Some other works build rule-based systems
for detecting anomalies, but many of these do not model path
planning.

Our work builds off a stream of structured prediction-
based approaches using variations of one-class support vec-
tor machines (OC-SVM) (Muller et al. 2001). Using kernel-
based techniques, these methods learn a representation of the
data set in a transformed feature space. As an extension to
methods that assume the data are independently distributed,
some approaches exploit additional latent structure of the
data. Some for example, uncover the underlying grammar
structure of speech or text for intrusion detection (Joachims
et al. 2009; Rieck et al. 2010). We follow the example of
a hidden Markov kernel for anomaly detection in data with
latent temporal dependency structure (Görnitz, Braun, and
Kloft 2015).

SVM Anomaly Detection
In this section, we introduce the formulation of the stan-
dard one-class support vector machine (OC-SVM), which
will later be extended to latent structure-based OC-SVM.
The OC-SVM finds a linear separation between vector rep-
resentations of normal data and anomalies. The standard
OC-SVM assumes that the data is independently distributed,
while the latent OC-SVM first uncovers underlying latent
variables and then performs anomaly detection.

The OC-SVM derives from a similar formalization to the
standard SVM classifier. In short, the standard two-class
SVM computes a linear boundary by maximizing the bound-
ary’s distance to a subset of the data points closest to the
true border between the two classes. It optimizes follow-
ing the expectation maximization method by iterative fit-



ting of boundary parameters and re-selection of the subset
of closest points. Practically, the two classes’ data overlap,
so the optimization problem is relaxed and a few training
mis-classifications are allowed. The subset of closest data
points is the set of ”support vectors” and lies on both sides
of the boundary.

The OC-SVM forms an outlier detector from this frame-
work. Its boundary tightly encompasses the given data,
dividing the two classes: ”outlier” and ”inlier”. For a
given data set, it chooses a fraction of the support vectors
(parametrized by ν) to lie on the outlier side of the bound-
ary. These are typically trained such that the outliers end up
on the same side of the boundary as the origin. This can
be interpreted as a threshold on a scoring function which
indirectly measures the likelihood that a new data point be-
longs to the same distribution. More formally, for data vec-
tors x1, ..., xN ∈ X ⊆ RD embedded in a feature space
using mapping φ(xi) : RD → RF , the OC-SVM has the
objective to linearly separate the data into normal data and
anomalies:

min
ω,ρ,ξ≥0

||ω||2 − ρ+
1

νN

N∑
i=1

ξi

subject to 〈ω, φ(xi)〉 − ρ+ ξi ≥ 0,∀i = 1, . . . , N

(1)

where 〈·, ·〉 denotes inner product, ω ∈ RF is the weight
vector of the linear model, ρ ∈ R is the threshold, and
ξi ∈ R are the slack variables allowing for class over-
lap. The boundary is a hyper-plane in the earlier linear
case described, but here, using the mapping φ and the ker-
nel method, the decision boundary of the SVM can be
made nonlinear. With a radial basis kernel, for example,
〈φ(x), φ(y)〉 = K(x, y) = exp (−γ‖x− y‖2) a decision
boundary arises that resembles that of a nearest neighbors
approach.

Intent Prediction by Agent-based Lagrangian
Mechanics

Lagrangian Mechanics
Lagrangian Mechanics reformulates Newtonian balancing
of forces into an optimization problem. It models physical
interactions as a minimization problem over possible paths a
system can take and postulates that situations unfold follow-
ing minimizing paths. For example, a ball rolling through
a hilly landscape will roll through following a path which
stays as much as possible within the valleys. Let such a par-
ticle’s position over time t be x(t), and velocity ẋ(t), and
the force field affecting it be ~F (x(t)). The objective func-
tion of minimization is called action and is defined as the
integral over time of the so called Lagrangian function. This
problem can be written as:

Γ(t1, t2) = argmin
x

∫ t2

t1

L(x, ẋ, t)dt (2)

Where t1 and t2 are the start end of the time that we are
modelling over, Γ(t1, t2) 3 x(t) ∀ t ∈ [t1, t2] is the parti-
cle’s trajectory andL(x, ẋ, t) is the Langrangian function for

this scenario. The Langrangian is the kinetic energy minus
the potential energy of the particle:

L(x, ẋ, t) =
1

2
mẋ(t)2 −

∫
x

~F (x(t))d~x(t) (3)

Here, m is the particle’s mass, and the integral is taken over
the particle’s path. The integral term can also be recognized
as a work done against the potential field over the path of
the particle. In our model this term will be parameterized
and fitted.

Agent-based Lagrangian Mechanics
Agent-based Lagrangian Mechanics models agents as parti-
cles following force fields. These force fields are generated
by attractive or repulsive point source goals or obstructions.
In a maritime setting, particles correspond to vessels, goals
to points of interest such as ports or fishing spots, and repul-
sive sources to obstacles such as landmasses or other vessels.
In physics, attraction and repulsion forces are modelled as
an inverse squared distance relationship. Symbolically, the
magnitude of the force F of attraction between two objects
at positions x1 and x2 can be modelled as:

F1,2 = kf
k1k2

‖x1 − x2‖22
(4)

where kf , k1, k2 are scalar constants unique to the type of
force, and the nature of the objects at positions 1 and 2 re-
spectively. k1 and k2 describe the inherent attractive strength
of the objects. They are mass when the force is gravita-
tional or charge when the force is electrical. The direction
of the force is given by the difference in positions x1 and
x2 and may be flipped when the force is repulsive. Agents
choose the fields they respond to, but there is no choice but to
avoid any obstacles. In the maritime example, vessels move
towards one point of interest at a time and need to avoid
collisions with any vessels or landmasses. A discrete set of
points of interest represents a higher level action space and
set of available intents. Predicting an agent’s goal and in-
tent is choosing the source of attraction that minimizes the
Lagrangian objective for a given trajectory. Goals are cho-
sen one at a time, and all repulsive sources are shared by all
agents. This is also extended to allow sequences of goals.

Intention-based Anomaly Detection
Intention Prediction
We denote a set ofM agents asA = {ai : i = 1, ...,M} and
G sources of goals which agents may choose from. Agents
plan paths around obstacles, so we include R constantly
present repulsive sources representing the environmental ob-
structions or even other non-stationary agents. The total set
of point sources is S = {sj : j = 1, ..., G+R}.

When ai ∈ A selects goal sj ; j ∈ {1, 2..., G} the net
force which ai is affected by can be expressed as

~F (x) = ~Fai,sj (x) +
∑
k∈R

~Fai,sk(x) (5)

In the work of Xie et al, the force magnitudes are inversely
proportional to the Mahalanobis distances between the agent



and the attracter/repeller (Xie et al. 2018). Hence, we have
‖~Fai,sj (x)‖ ∝

(
(x − sj)TΣ−1(x − sj)

)−1
. For simplicity,

we use a diagonal covariance matrix, Σ = σ2I, The agents
respond to the same goals identically, or in the maritime set-
ting, all vessels have the same attraction toward a given port,
but ports may vary between each other in attractiveness. We
model the action of constants kf and k1 with a constant ωj
and the action of constant k2 with a constant σ. Each goal’s
ωj will be learned and σ will be a hyper-parameter. Repul-
sion forces act in the same way, but their vector directions
are flipped, or equivalently, the corresponding ωj will be
negative. We rewrite the force:

‖~Fai,sj (x)‖ = ωj‖~Fj(x)‖ = ωjσ
2‖x− sj‖−2. (6)

Two different σ’s are used: one each for the set of obsta-
cles and the set of attracters. The σ for repulsion is smaller
as agents are driven toward goals from far away but may
only respond to obstacles close by when there is a chance
of collision. When agent ai is assumed to choose only one
goal through its trajectory, we can model its choice as fol-
lows. ai’s trajectory in continuous space, moving toward an
attractive goal sj , over discrete time steps is denoted as a se-
quence of points Γi,j(t1, t2) = (x(t1), ..., x(t2)). To predict
an agent’s intent, we choose the goal j whose associated ac-
tion is minimal and best fits the trajectory Γi,j . At the large
geographic scale we test in, we assume vessels change speed
negligibly, so that the velocity, ẋ is relatively constant, opti-
mization of the Lagrangian objective becomes a problem of
minimizing the work done against the force field. In a dis-
crete time setting, we can rewrite the optimization as:

argmax
j

∑
t

〈ωj ~Fj(x),∆~x(t)〉 (7)

with 4~xt = ~xt+1 − ~xt. This has the probabilistic interpre-
tation that the likelihood of a given agent trajectory is:

P (Γ(t1, t2)) ∝ 1

Z
exp(

t2−1∑
t=t1

〈ωj ~Fj(x),∆~x(t)〉) (8)

The goal is chosen to maximize the log probability of the
trajectory given that the agent is following the force field
towards it, P (Γ(t1, t2)|sj). Agents may also move through
a sequence of goals or change goals. For example, a ferry
may move back and forth between two ports, so we include,
in the model, sequences of goals, sj(t). We model the proba-
bility that an agent continues heading toward its current goal
through a timestep as κ and the probability that it changes to
another goal with even chance over other goals totaling to
1− κ. More explicitly,

P (s(t)|s(t− 1)) =

{
1−κ
N−1 , s(t) 6= s(t− 1)

κ, s(t) = s(t− 1)
(9)

To incorporate this, first, consider the trajectory likelihood
as a product over timesteps:

1

Z

t2−1∏
t=t1

exp(〈ωj ~Fj(x),∆~x(t)〉) =
1

Z

t2−1∏
t=t1

P (Γ(t, t+ 1)|sj)

(10)

We can then write P (Γ(t1, t2)|s(t)):

∝ 1

Z

t2−1∏
t=t1

P
(
Γ(t, t+ 1)|s(t)

)
P
(
s(t)|s(t− 1)

)
(11)

where we define P
(
s(t1)|s(t1 − 1)

)
:= P

(
s(t1)

)
as the

prior on the initial goal. This makes the new objective:

argmax
j(t)

∑
t

〈ωs(t) ~Fs(t)(x),∆~x(t)〉+ logP
(
s(t)|s(t− 1)

)
(12)

This optimization is a choice of a series of goals, which
can be computed with dynamic programming. The choice
of goals is extended to allow for a sequence of goals with a
regularization on the number of switches. This way, in the
maritime setting, we can model, for example, a ferry mov-
ing between two ports. In a sense, the agent’s sequence of
goal switches behaves like a hidden markov model with a
known transition matrix that has κ along the diagonal and
1−κ
N−1 in all other entries. From this perspective, the incre-
mental probabilities, P (Γ(t, t + 1)|s(t)

)
are akin to emis-

sion probabilities. This formulation differs slightly from Xie
et al’s which models a probability over number of switches
and imposes a bound on the number of switches (Xie et al.
2018). This is like the regime changes from switching state
space models (Nicholas Hoernle 2018). In our work, goals
define regimes, but may be revisited. The main difference
from that of Hoernle et al is that our ”emission” probabilities
do not directly use a state space model. Also, this approach
also does not label any time steps in a semi-supervised fash-
ion.

Latent OC-SVM Objective
For SVM problems that exhibit underlying latent structures,
it is desirable to first infer hidden variables, based on which
we can do further analysis. For example, in the maritime set-
ting, agents’ goal choices make up their latent intents. In the
anomaly detection literature, an extension to the OC-SVM is
the latent OC-SVM (Görnitz, Braun, and Kloft 2015). The
data vectors in this treatment belong to an observable sub-
space. The remainder of the space is inferred by a separate
maximization of likelihood of the latent structure. This ap-
proach uses a joint feature map Ψ(x, z) in place of φ(x) in
the original OC-SVM, which allows for a latent variable z
to be assigned to each data point. The observable subspace
will derive from the force field-based probability of the tra-
jectory, and indicator variables will be used to represent the
inferred goal choices. The latent variable assignment is de-
termined by argmaxz〈w,Ψ(x, z)〉. Formally, the objective
of the latent OC-SVM is:

min
ω,ρ,ξ≥0

||ω||2 − ρ+
1

νn

M∑
i=1

l(ξi)

subject to max
z∈Z

(〈ω, ψ(xi, z)〉 + δ(z))− ρ+ ξi ≥ 0,

∀i = 1, . . . ,M
(13)

where l is a loss function, which is often defined as the
monotonically non-decreasing hinge loss function l : l(t) =
max(0, t).



Often, this optimization is interpreted as maximizing a log
probability of the observation and the hidden variables, i.e.,
log(p(x|z)) = 〈w,Ψ(x, z)〉, and log(p(z)) = δ(z). For ex-
ample, Görnitz et al uses x as a sequence of emissions of
a hidden markov model, z as a latent state transition chain,
and w as an embodiment of transition and emission proba-
bilities (Görnitz, Braun, and Kloft 2015). There, latent state
transition chains were chosen using the viterbi algorithm. In
general, to train such a model, OC-SVM training and opti-
mization of latent vector choices argmaxz〈w,Ψ(x, z)〉 are
alternated. We will use this extension, i.e., the latent OC-
SVM, to add agent’s choice of goals. Specifically, the latent
variable z represents the intention/goal of an agent, and the
intention prediction can be formulated as:

z = argmax
z∈Z

log p(z|x)

= argmax
z∈Z

log p(x|z) + log p(z)

= argmax
z∈Z

〈ω,Ψ(x, z)〉+ δ(z)

(14)

We calculate our feature Ψ(x, z) using indicator variables to
represent goal choices as follows: Notationally, let 1[F ] be
the indicator of F equalling 1 if the condition represented
by F is satisfied and 0 otherwise. Let 1[zt = j] be 1 if the
agent’s current chosen goal is sj . Let 1[zt+1 = l ∧ zt = j]
be 1 if the agent switches from goal sj to goal sl between
times t and t + 1. And let 1[z ∈ B] be 1 if z indexes an
obstacle. We can write the objective as:

T−1∑
t=2

∑
k∈[N+B]

(1[k = j] + 1[k ∈ B]) ∗ ωk〈~Fk(xt),∆~xt〉

+

T−1∑
t=3

∑
k,l∈[N ],k 6=l

1[zt+1 = l ∧ zt = j] log
( 1− κ
N − 1

)
+

T−1∑
t=3

∑
k∈[N ]

1[zt+1 = k ∧ zt = k] log(κ)

(15)
The first sum can be taken to represent 〈ω,Ψ(x, z)〉. We can
rewrite it as:

∑
k∈[N ]

ωk ∗ 1[k = j] ∗ 1[k ∈ N−] ∗
T−1∑
t=2

〈~Fk(xt),∆~xt〉

(16)
Here, the k-th term of the sum gives k-th component of ω
and Ψ. Each component represents the total work done by
the attractive field of a goal. The remaining two sums rep-
resenting goal switching can be taken to represent a regular-
ization term. κ close to 1 penalizes switching too often.

In the learning stage, we optimize the parameters in an
iterative way. We first fix the force magnitudes ω and solve
the best z for each trajectory using dynamic programming.
Then we solve the ω using OC-SVM. We repeat the above
process until it converges in a similar fashion to that for the
latent OC-SVM (Görnitz, Braun, and Kloft 2015).

Experiments
Marine Surveillance
In this study we utilized historical Automatic Identification
System (AIS) data provided by marinecadastre.gov which
includes position, course and speed information for a variety
of marine vessel types (Bureau of Ocean Energy Manage-
ment (BOEM) and National Oceanic and Atmospheric Ad-
ministration (NOAA) ). The data was reported in years 2011
and 2013 and was not limited to a specific vessel type. To re-
duce computational complexity and increase the likelihood
of higher density data, we limited our scope to AIS data
gathered in higher traffic marine regions surrounding San
Diego, CA and Long Beach, CA. Additionally, we incorpo-
rated data from osav-usdot.opendata.arcgis.com for known
port locations, which we narrowed by the bounding regions
for the two test locations (U.S. Department of Transporta-
tion (USDOT) / Bureau of Transportation Statistics (BTS)
).

Synthetic Anomalous Data
In this study, we train an unsupervised model, assuming
no access to anomalous ships at training time; to support
quantitative evaluation of our model, we generated synthetic
anomalous trajectories based on adding realistic deviation to
historical AIS traffic and modifications from domain knowl-
edge provided by maritime surveillance subject matter ex-
perts.

We generated test data using statistics gathered from the
historical AIS data. The historical data from bounding boxes
around the two test settings were extracted and then split
into independent tracks for each vessel. In addition to the lo-
cation information, vessel type, vessel type frequency, and
vessel speed over ground (SOG) data was recorded for each
AIS entry. Traversal frequencies were calculated over dis-
cretized grids of the settings. Land areas were labelled using
coastline data. Also, start and end points for trajectories were
recorded to represent high interest regions.

To generate a trajectory, we utilize standard A∗ shortest
path search on randomly selected start and end points and
randomly perturb the path. The start and end point are cho-
sen randomly from the grid with probability proportional to
the traversal frequency. For a portion of our synthesized tra-
jectories, these points are restricted to grid squares along
coastlines and chosen with the previously mentioned proba-
bilities. Next, an A∗ search was run using the chosen start
and end. During search, the cost of grid spaces was ran-
domly modified. With a set probability at each step, the
traversal frequencies multiplied by a scale factor are added
to the incremental cost of generated child nodes. The prob-
ability that this frequency penalty is added and the discount
scale factor are left as parameters. This penalty enforces that
paths behave less like previous history. In addition to the dis-
count factor and inclusion probability, path modifiers were
included allowing for sudden divergence from a previously
expected trajectory to a new destination, path smoothing to
reduce jaggedness, or loitering. The modifiers provide addi-
tional sources of anomalous behavior, which serve to model
behaviors of interest listed by USCG, namely unexplained



Figure 2: Long Beach Heatmap and One Prediction. At-
traction heat increasing from red to green. The goals cor-
responding to lower 10-th percentile of attraction weights in
black, repelling goals with negative weight red, and attrac-
tive goals in green and plotted with circle with radius pro-
portional to attraction weight. Background obstacle ships in
blue. Trajectory of interest darkening with passage of time.
Goals predicted for trajectory in purple

loitering and unusual ports. For initial testing and experi-
mentation, the modifiers were limited to a single instance
for a given path. The loitering modifier added multiple po-
sition reports randomly generated in the selected end point
region, with the region selected based on the frequency data.
Additionally, the loitering points are added to the ends of
complete paths. The sudden divergence modifier truncates
the original path’s end section and appends a new path from
the truncation point to the divergent endpoint. The smooth-
ing modifier serves to test the effect given by the shape and
coarseness of a path. This modifier segmented paths and re-
moved up to a specified number of segments in a section,
while checking that this does not cause the path to inter-
sect with land masses. The number of removals is upper
bounded.

Intention-Based Anomaly Detection
We model ships as agents ai and frequented way points, off-
shore platforms, and ports as goal sources sj . We restricted
the setting to a continuous 2D bounded region. Ships were
modelled as changing speed negligibly in response to their
attraction to goals, so the kinetic energy portion of the La-
grangian was ignored. Land masses and other ships in the
scene were modelled as obstacle sources. While each goal
was assigned its own ωj , the ships and landmass points were
restricted to share a single separate component for obstacles,
ωk = ωobstacle∀k ∈ [R]. This imposed that agents respond
to obstacles in the same way whereas goals may vary in at-
tractiveness and also accounted for the changing number of

Figure 3: San Diego Heatmap and One Prediction

vessels to avoid.
To evaluate our algorithm, we compare it against other

OC-SVMs. As a baseline, we compare against a Linear OC-
SVM taking in the raw trajectories as input. We also com-
pare against SVMs with different kernels, specifically, the
polynomial and radial basis function (RBF) kernel. To com-
pare these models, collections of real world AIS data be-
longing to four hour time windows were collected. Ship tra-
jectories outside of a longitude and latitude bounding box
were removed. A quarter of the windows were set aside for
testing, and the rest were used for training. For each method,
the mean of the training data latitudes and longitudes was
also subtracted off.

To train our method, using the OC-SVM provided by
sklearn, the set of structured features needed to be rescaled
to avoid a positive feedback loop increasing the magnitude
of the OC-SVM’s learned ω (Buitinck et al. 2013). This was
used to account for SVM weight vector norm regularization.
The feature was rescaled so that the largest L-1 norm of a
feature in the dataset was 1.

Obstacle source locations were annotated for the scenes
tested. Coastline and island polygons were obtained, and
point sources were placed in an evenly spaced grid into
regions within the polygons. Complete port annotations
proved difficult to obtain. Instead, goal locations were sam-
pled from trajectory data. 200 points representing poten-
tial goals were sampled randomly from the ship trajectories
used. To train the baseline models, a grid search was per-
formed to tune hyper parameters. These were the SVMs’ ν
and error tolerance values, the polynomial svm’s degree, and
the RBF-SVM’s γ value. For testing, synthetic AIS trajecto-
ries were added to the time windows set aside for testing.
Models were evaluated based on their accuracy in detecting
the artificially generated trajectories. In the computation of
our features, the artificial trajectories were treated as ships
in the scene and influenced repulsion.



Long Beach San Diego
Mod. Prop. Intent RBF Poly Linear Intent RBF Poly Linear

a)

2.5 61.2 54.3 49.5 52.7 49.9 60.8 58.9 53.2
5 74.8 68.1 63.4 53.6 55.4 58.5 58.2 47.1
10 86.1 80.4 62.5 48.7 61.6 63.5 56.7 47.0
15 89.0 83.3 67.5 50.3 65.6 53.4 61.0 52.9
20 88.6 84.6 66.9 50.7 79.6 51.6 54.2 52.0
30 88.6 83.0 64.8 50.5 83.9 54.1 52.7 51.3

b)

2.5 61.4 60.2 60.0 47.6 51.1 56.6 58.2 55.4
5 65.0 65.3 60.1 55.1 45.5 55.6 55.8 51.2
10 82.2 81.8 70.1 49.0 58.5 59.8 55.3 44.8
15 83.8 81.9 73.8 48.5 69.0 66.5 61.6 51.0
20 83.2 84.1 71.0 49.4 64.1 65.8 60.9 52.6
30 84.4 84.9 73.2 50.8 68.7 73.3 69.7 56.9

c)

2.5 60.5 59.9 58.4 46.9 57.1 55.4 56.5 63.5
5 79.5 73.5 64.4 47.4 64.0 59.8 55.1 50.4
10 93.0 85.0 65.2 49.8 65.9 51.1 53.4 58.7
15 95.4 88.9 67.5 49.3 69.6 57.6 63.4 42.1
20 95.2 84.5 71.5 49.6 80.9 60.6 51.7 54.5
30 95.2 86.4 72.5 49.5 93.0 63.2 58.6 48.1

d)

2.5 62.0 55.3 52.7 49.0 50.4 50.2 52.6 54.3
5 73.4 67.3 62.8 50.3 56.5 52.8 59.2 45.8
10 92.7 85.8 69.0 49.3 63.4 51.7 55.3 56.4
15 94.3 89.3 74.4 49.7 72.7 52.4 52.3 51.2
20 95.3 88.3 74.8 49.8 82.6 49.8 52.4 51.3
30 95.2 88.8 73.1 50.0 92.2 54.4 56.1 53.4

e)

2.5 61.5 57.0 50.5 56.8 54.7 59.7 58.4 50.4
5 65.2 61.0 49.7 53.6 54.9 57.5 54.9 44.0
10 77.6 74.2 54.5 54.1 60.3 58.7 58.2 52.3
15 79.1 78.6 52.6 50.9 60.5 64.2 56.2 52.1
20 80.3 75.5 54.5 51.6 64.0 65.8 55.2 55.3
30 82.5 80.6 54.1 52.4 68.0 72.3 59.3 49.3

Table 1: The area under the curve scores for all compara-
tive methods (in percentages). Scores are presented for both
Long Beach and San Diego settings, for Faked trajectories
with Modification types: a) All modifications included, b)
No modification, c) smoothing, d) Divergence, and e) Loi-
tering. Results are shown for test scenes with varied propor-
tions of anomalous data (in percentages).

Experimental Results
Tables 1 and 2 summarize the performance of the different
models in our anomaly prediction study. The intention-based
detector outperforms the kernel SVM-based detectors in the
Long Beach setting in accuracy of detecting our artificial
trajectories. For only the unmodified artificial trajectories,
our results are comparable but do not significantly outper-
form the RBF OC-SVM. This initial result shows promise
for anomaly detection based on the intent-based formula-
tion. Qualitatively, for the Long Beach scene, the coupled
optimization appears to have the effect of selecting the high-
est priority goals from the many goals available. In figure 2
and 3 the goals corresponding to the attraction weights be-
low 10% of the highest are marked in black, and the rest are
marked in green. This shows a strong stratification in learned
attraction weights based on popularity. Figure 1 plots known
port locations from annotation. Comparing between the two
images, many high weight goals match the known port loca-
tions. Some match the location of ports or offshore platforms
not included in the known ports, such as at Catalina Island
and the Beta Offshore Platform Ellen. There are also goals
in open ocean reflecting common way points.

The San Diego setting included more open ocean and a
greater variety of trajectories. All models had lower accu-
racy in this test scene. The simpler SVMs suffered from the
lack of consistent routes in the setting which make it difficult

Long Beach San Diego

Table 2: AUC score by proportion of anomalous data in test
scene and ROC curve for test scenes in which 30% of data
are anomalous. Results are plotted for Intention prediction,
Radial Basis Function Kernel, Polynomial Kernel and Lin-
ear (Raw) features in the Long Beach and San Diego set-
tings.

to find support vectors in the raw data or in the kernels’ re-
sulting feature spaces. In our model, learned goal attractions
are less stratified in this scene, reflecting the lack of consis-
tent goals in the open ocean setting. Also, the goals in the
ports and bays in the south east of the image do not appear
to be prioritized either due to the large presence of ships fol-
lowing behaviors not captured by goal-based path planning.
Our proposed model has higher accuracy scores for larger
proportions of anomalies in test scenes, whereas the other
OC-SVMs do not. Our conjecture is that the slight increase
in robustness is due to the model characterizing some history
of past trajectories as opposed to destinations in the spread
out goal locations.

Conclusion
In this paper, we present a novel anomaly detection method
for behaviors from trajectories. We evaluate the probabil-
ity of a trajectory being anomalous based on prediction of
agents’ latent intentions, which, in this formulation are the
sequences of goals and way points being pursued. Inten-
tion prediction is integrated with structured features based
on path modelling using agent-based Lagrangian mechan-
ics. Then, anomaly detection is carried out using a one-class
support vector machine at the end of the learning framework.
The prediction of intentions and training of the anomaly de-
tector are coupled, allowing a single set of weights to be
trained by alternating two optimizations. Experimental re-
sults distinguishing between faked trajectories in a marine
surveillance show that our method is promising for detecting
anomalous behaviors in the context of goal-directed agents.
We hope that the method will contribute to the important
applications of anomaly detection.
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